

Computational Modeling of Transcritical Shock-Droplet Interactions

Bradley Boyd & Dorrin Jarrahbashi

Mechanical Engineering Department, Texas A&M University

Supercritical Propulsion

Jofre & Urzay, Progress in Energy & Combustion Science, 2021

Transcritical Behavior

 Transcritical problems involve the injection of fuel at a supercritical pressure into a high-temperature environment.

- Transcritical problems involve the injection of fuel at a supercritical pressure into a high-temperature environment.
- As the fuel is heated it transitions from a liquid-like to gas-like supercritical fluid.
- This is termed **pseudo-boiling** and occurs across the Widom line.

Application - Spray A Diesel Injection Am

- 600 m/s jet
- 6 MPa
- 363 K (fuel)
- 900 K (air)

Numerical Method

- Diffuse-interface, fully-compressible, inviscid, multiphase model, with multiple fluid species
 - Conservation of mass, momentum, energy, and fluids species
- Peng-Robinson Equation of State (PR-EoS)
- WENO reconstruction
- Positivity-preserving and maximum-principle-satisfying limiter
- RK3-TVD time-stepping
- HLLC Riemann Flux
- In-house C++ code that is parallelized with MPI and domain decomposition.

$$\frac{\partial(\rho)}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial(\rho)}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$
$$\frac{\partial(\rho Y_1)}{\partial t} + \nabla \cdot (\rho \mathbf{u} Y_1) = 0$$

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + \nabla \cdot (\rho\mathbf{u} \otimes \mathbf{u} + p\mathbf{I}) = \mathbf{0}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot (\mathbf{u}(E+p)) = 0$$

Droplet-Shock Interaction

- We consider the interaction of a **shock wave** with a **fuel droplet** at a supercritical pressure (6 MPa).
- The fuel droplet is *n-dodecane* and the surrounding fluid is *nitrogen* and the shock wave is *Mach 1.2*.

	nitrogen	n-dodecane
$T_C[K]$	126.2	658.1
$p_C[MPa]$	3.396	1.82

Computational Schlieren Images

- Visualization of density gradients
- Black corresponds to the largest density gradient

Fuel droplet (n-dodecane)

Surrounding fluid (nitrogen)

Pressure - 6 MPa

Mach 1.2 shock

Speed of sound ratio (n)

$$n=c_S/c_D$$

Speed of sound ratio (n)

$$n=c_S/c_D$$

n=1 @ 545.7 K

- n<1 Diverging
- n>1 Convering

Transitional Behavior at 545.7 K

- The speed of sound of n-dodecane drops below nitrogen at 545.7 K.
- The shock-droplet interaction transitions from a diverging case (500K) to converging case (650K).

Diverging Case

Converging Case

Convergent Case

 The focusing of the refracted shock wave results in a high-pressure region in the droplet near the downstream interface.

Pressure Effect at Transcritical Temperature

- Until now, pressure has been fixed 6 MPa
- Properties change with pressure

Weakly convergent - inward jet

Weak vs Strong Convergence

Weak convergence

- The transmitted shock results in the pressure gradient at the downstream interface
- Drives the interface inward
- An inward jet begins to form

Inward vs. Outward Axial Jet

Stronger Shock: Convergent

 By increasing the shock strength, the transmitted shock wave and crossover shock wave shapes change significantly, stretching the droplet less radially (consistent with SDI)

Summary & Conclusions

- The ratio of the SoS indicates if the refracted shock diverge or converge.
- The transitional point from diverging to converging occurs when n = 1 at approximately 545.7 K
 at 6 MPa.
- The convergence and localized maximum pressure results in the formation of an axial jet. If the convergence occurs within the bubble, this jet is directed outwards.
- Depending on the speed of sound ratio (n), the converged cases develop either inward axial jet (weakly convergent) or outward axial jet (strong convergence). (n~1.5)

Thank You!

bradley.w.boyd@gmail.com